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Example 1, 2D, of object segmentation/delineation
134 J Math Imaging Vis (2009) 35: 128–142

Fig. 5 (a) An image of peppers.
(b, c) The probability maps Po

and Pb for the bigger pepper at
the top. (d) The segmentation by
graph-cut using (5) with λ = 2.
(e, f) Graph-cut results using (6)
with increasing power values, 2
and 5, respectively

image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

An image of peppers
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Fig. 5 (a) An image of peppers.
(b, c) The probability maps Po

and Pb for the bigger pepper at
the top. (d) The segmentation by
graph-cut using (5) with λ = 2.
(e, f) Graph-cut results using (6)
with increasing power values, 2
and 5, respectively

image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

Delineation version 1
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Fig. 5 (a) An image of peppers.
(b, c) The probability maps Po

and Pb for the bigger pepper at
the top. (d) The segmentation by
graph-cut using (5) with λ = 2.
(e, f) Graph-cut results using (6)
with increasing power values, 2
and 5, respectively

image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

Delineation version 2
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Fig. 5 (a) An image of peppers.
(b, c) The probability maps Po

and Pb for the bigger pepper at
the top. (d) The segmentation by
graph-cut using (5) with λ = 2.
(e, f) Graph-cut results using (6)
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image space, whenever object and background present re-
gions with similar features (Fig. 5a). Therefore, this ap-
proach seems to be more useful in applications where re-
liable probability maps are available [38].

Other possible solution is to raise the arc weights to the
power of n (6), considering w̃(s, t) = [w(s, t)]n instead of
w(s, t) in (4). As we increase the power value n, larger
boundaries are favored (Figs. 5e, f), avoiding the need to
compute the probability maps.

Ẽ1(L̂) =
∑

∀(s,t)∈A| L(s)=1,L(t)=0

[w(s, t)]n

=
∑

∀(s,t)∈A| L(s)=1,L(t)=0

w̃(s, t) (6)

Therefore, from the discussion above, we have two pos-
sible solutions to fix the undesirable bias of E1. One is to
consider E2 by changing the graph topology at the price of
losing the connectivity notion in the original graph (I,A),
which makes the method to behave like a threshold de-
pending on λ [8]; and the second is to penalize arcs with
high weights w(s, t) by applying some increasing trans-
formation, as the power of n in Ẽ1 or as the exponen-
tial used in [29], but conserving the topology of the graph
(I,A). In fact, it will be proven in Sect. 8 the formal
conditions under which optimum-path forest by IFT-SC
and graph-cut segmentation by (6) produce the same re-
sults. Next, Sects. 6 and 7 show that the methods IFT-
SC and IFT-CT based on optimum-path forest are indeed
graph-cut approaches, each with its own graph-cut mea-
sure.

6 IFT-SC as a Graph-cut Approach

The theorems assume an undirected graph, with fixed arc
weights (Sect. 2) and will be proven for object/background
segmentation.

From an optimum-path forest we obtain an image parti-
tion in two disjoint sets with distinct labels. Let Csc be any
cut boundary induced by an IFT-SC segmentation L̂ with
a single label for each tie zone. For any arc (a, b) ∈ Csc,
at least one of the following inequalities is true with the
left-hand side being strictly lower than the right-hand side
(Fig. 6).

fmin(πa · 〈a, b〉) < fmin(πb) (7)

fmin(πb · 〈b, a〉) < fmin(πa) (8)

This is a consequence of path optimality (1) for fmin (2)
when a single label is assigned to each tie zone. If all tie
zones are assigned to the object then (7) holds. If all tie
zones are assigned to the background then (8) holds. In the
case of LIFO tie-breaking policy, at least one of these in-
equalities will be true for all arcs in the cut.

For example, assume that all tie zones were labeled to the
background. If the extension of path πb by the arc (b, a) has
higher value than path πa , then this path πa is not optimum.
Otherwise if the extension of πb has the same value of path
πa , then pixel a is in a tie zone and should not be part of the
object. Therefore, (8) is the only valid configuration left.

In fact we may conclude even more and consider the
equations below instead of (7), (8):

w(a,b) < fmin(πb) and w(a,b) ≤ fmin(πa) (9)

w(a,b) < fmin(πa) and w(a,b) ≤ fmin(πb) (10)

Delineation version 3
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Example 2, 3D: a CT image of patient’s cervical spine

A slice of an original 3D image Surface rendition of segmented
three vertebrae, together

Color surface rendition of the segmented three vertebra
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Example 3: An MR angiography image of the body
region from belly to knee.

Rendition of an original 3D,
contrast enhanced, image

A surface rendition of the entire
vascular tree

Color surface rendition of segmented arterial (red) and veinous (blue) trees
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Image segmentation — formal setting

An (n-dimensional) image is a map f from C ⊂ Rn into Rk

The value f (c) represents image intensity at c, a
k -dimensional vector each component of which indicates a
measure of some aspect of the signal, like color.

Segmentation problem: Given an image f : C → Rk ,

find a “desired” family S(f ) = {P1, . . . ,Pm} of subsets of C.

Delineation problem (on which we concentrate)

is when m = 1, i.e., when S(f ) = P ⊂ C.

Krzysztof Chris Ciesielski Delineating objects via `p energies 5
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Delineation of an image f : C → Rk — formal setting

How to express that S(f ) = P ⊂ C is desired?

There is no magic formulation that expresses all desires!

Several practical “solutions” exist. We use here the following:

Fix seed sets:
S indicating the foreground object P, (i.e., S ⊂ P), and
T indicating the background (i.e., T ∩ P = ∅).

This restricts the search space for S(f ) to the family
P(S,T ) = {P ⊂ C \ T : S ⊂ P}

Define an energy/cost function ε : P(∅, ∅)→ [0,∞)

Declare S(f ) to be desired when it minimizes ε on P(S,T ).

Krzysztof Chris Ciesielski Delineating objects via `p energies 6
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Digital vs “continuous” image f : C → Rk

The above set-up makes sense and was studied for the images
with scene C ⊂ Rn being open bounded region.

We discuss only digital images, with finite rectangular scenes:

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

Example of sets in P(S,T )
with S = {s}, T = {t1, t2}

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
.4!.2!

.7!

.7!
1!

.2!
1! 1!1!

.2! .4! 1!

.4!

s!

t2!

t1!
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Outline

1 The problem of object delineation in a digital image:
translating intuition to energy minimization setup

2 Object cost as a function of object boundary; `p cost

3 Delineation algorithms associated with `p energies

4 Comparison of GC and FC image segmentations

5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

6 Relation between MSF vs OPF: proof
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Heuristic and the definition of boundary

Heuristic: The objects boundary areas
should be identifiable in the image, as the
areas of sharp image intensity change.

What constitutes boundary bd(P) of P?

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
.4!.2!

.7!

.7!
1!

.2!
1! 1!1!

.2! .4! 1!

.4!

s!

t2!

t1!

Desired object!

Need graph (or topological) structure G = 〈V ,E〉 on C:

Pixels c ∈ C are its vertices, V = C;

Edges {c,d} ∈ E are “nearby” vertices (e.g. as in figure).

bd(P) is the set of all edges {c,d} ∈ E with c ∈ P and d /∈ P

Krzysztof Chris Ciesielski Delineating objects via `p energies 8
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Weighted graphs and `p cost functions, 1 ≤ p ≤ ∞

Assume that with every edge e =
{c,d} ∈ E of an image f we have as-
sociated its weight/cost w(e) ≥ 0, which
is low, for big ‖f (c)− f (d)‖.

Typically, w(e) = e−‖f (c)−f (d)‖/σ2
, see fig.

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
.4!.2!

.7!

.7!
1!

.2!
1! 1!1!

.2! .4! 1!

.4!

s!

t2!

t1!

Desired object!
If FP : E → [0,∞), FP(e) = w(e) for e ∈ bd(P) and FP(e) = 0
for e /∈ bd(P), then `p cost is defined as

εp(P)
def
= ‖FP‖p =


(∑

e∈bd(P) w(e)p
)1/p

if p <∞
maxe∈bd(P) w(e) if p =∞.
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FC and GC algorithms as minimizers of εp

εp(P)
def
= ‖FP‖p =


(∑

e∈bd(P) w(e)p
)1/p

if p <∞
maxe∈bd(P) w(e) if p =∞.

p = 1: ε1(P)=
∑

e∈bd(P) w(e);

Optimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm optimizes ε1.

p =∞: ε∞(P)=maxe∈bd(P) w(e);
Optimization solved by (versions of) Dijkstra algorithm.

ε∞ optimized objects are returned by the algorithms:
Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC,
and Power Watershed, PW [C. Couprie et al, 2011].

p = 2: related to Random Walker, RW, algorithm [Grady, 2006],
see next slides.
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Fuzzy sets

A map x : C → [0,1] (i.e., x ∈ [0,1]C) can be considered as a
fuzzy set, with x(c) giving the degree of membership of c in it.

A hard set P ⊂ C is identified with a fuzzy set (binary image)
χP ∈ {0,1}C ⊂ [0,1]C , χP(c) = 1 iff c ∈ P.

For x ∈ [0,1]C let ε̂p(x) = ‖Fx‖p, where Fx : E → [0,∞),

Fx({c,d}) = |x(c)− x(d)|w({c,d}) for {c,d} ∈ E .

Then εp(P) = ε̂p(χP). We can minimize ε̂p on

P̂(S,T ) = {x : x(c) = 1 for c ∈ S & x(c) = 0 for c ∈ T}

instead of εp on P(S,T ) = P̂(S,T ) ∩ {0,1}C .

Krzysztof Chris Ciesielski Delineating objects via `p energies 11



Object delineation Defining energies εp algorithms GC vs FC Forests Thm on MSF vs OPF: proof

Random Walker, RW, algorithm

RW finds (the unique) ε̂2 minimizer on P̂(S,T ).
Defines its output as P = {c : x(c) ≥ .5}.

Problems with RW:

1 Output need not be connected (even when S and T are).
2 P need not minimize ε2 on P(S,T ).

Neither of this happens for ε1 (i.e. GC) or ε∞ (i.e. RFC or PW):

Thm: For p ∈ {1,∞}, any minimizer of ε̂p on P̂(S,T ) actually
belongs to P(S,T ).

Krzysztof Chris Ciesielski Delineating objects via `p energies 12
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(Non)-uniquness of the minimizers for ε1 and ε∞

Let Pp(S,T ) = {P ∈ P(S,T ) : P minimizes εp on P(S,T )}.

Both P1(S,T ) and P∞(S,T ) may have more than one element.

However, the outputs of the standard versions of the algorithms:

GC, from P1(S,T ),
RFC, from P∞(S,T ), and
IRFC, from P∞(S,T )

are unique in the sense of the next theorem.
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GC & FC segmentations — comparison theorem 1

Theorem (Argument minimality)

For p ∈ {1,∞}, Pε(S,T ) contains the ⊂-smallest object.

GC algorithm returns the smallest set in P1(S,T ).
RFC algorithm returns the smallest set in P∞(S,T ).
IRFC algorithm returns the smallest set in a refinement
P∗∞(S,T ) of P∞(S,T ).

Moreover, if n is the size of the image (scene), then

GC runs in time of order O(n3) (the best known algorithm)
or O(n2.5) (the fastest currently known algorithm)
Both RFC and IRFC run in time of order O(n) (for standard
medical images — the intensity range size not too big) or
O(n ln n) (the worst case scenario)

Krzysztof Chris Ciesielski Delineating objects via `p energies 14
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GC & FC — asymptotic equivalence

Theorem (Asymptotic equivalence of GC and FC)

Let Pm
p (S,T ) be the family Pp(S,T ) for the edge weight

function w replaced by its m-th power wm. Then

Pm
∞(S,T ) = P∞(S,T ) and similarly for IRFC algorithm.

So, the outputs of RFC and IRFC are unchanged by m.

Pm
1 (S,T ) ⊆ P∞(S,T ) for m large enough.

In particular, if P∞(S,T ) has only one element, then

the output of GC coincides with the outputs of RFC and IRFC

for m large enough.
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Outline

1 The problem of object delineation in a digital image:
translating intuition to energy minimization setup

2 Object cost as a function of object boundary; `p cost

3 Delineation algorithms associated with `p energies

4 Comparison of GC and FC image segmentations

5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

6 Relation between MSF vs OPF: proof

Krzysztof Chris Ciesielski Delineating objects via `p energies 15



Object delineation Defining energies εp algorithms GC vs FC Forests Thm on MSF vs OPF: proof

Advantages of FC over GC — theoretical angle

Speed: FC algorithms run a lot faster than GC algorithms:
O(n) (or O(n ln n)) versus O(n3) (or O(n2.5)).

Robustness: RFC & IRFC are unaffected by small seed changes.
GC is sensitive for even small seed changes.

Shrinking: GC chooses objects with small size boundary
(often with edges with high weights);
No such problem for RFC & IRFC

Multiple objects: FC framework handles easily the segmentation of
multiple objects, same running time and robustness.
GC in such setting leads to NP-hard problem,
so (for precise delineation) it runs in exponential time

Iterative approach: RFC has an iterative approach refinement;
No such refinement methods exist for GC at present.
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Advantages of GC over FC

Boundary smoothness: GC chooses small boudary, so it
naturally smooths it; in many (but not all) medically
important delineations, this is a desirable feature.

Basic FC framework has no boundary smoothing;
if desirable, smoothing requires post processing

Combining image homogeneity info with known object intensity:
GC naturally combines information on image
homogeneity (binary relation on voxels)
with information on expected object intensity
(unary relation on voxels);

Combining such informations is difficult to achieve
in the FC framework.
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Setup of experiments:

In each experiment we used 20 MR BrainWeb phantom
images (simulated T1 acquisition); graphs show averages.
Sets of seeds were generated, from known true binary
segmentations, by applying erosion operation:
the bigger erosion radius, the smaller the seed sets.
The weight map w(c,d), same for FC and GC, was
defined from the image intensity function f as
w(c,d) = −|G(f (c))−G(f (d))|,
where G is an appropriate Gaussian.
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Setup of experiments:

Data parameters: the simulated T1 acquisition were as follows:
spoiled FLASH sequence with TR=22ms and
TE=9.2ms, flip angle = 30◦, voxel size
= 1× 1× 1mm3, noise = 3%, and background
non-uniformity = 20%.

Computer: Experiments were run on PC with an AMD Athlon
64 X2 Dual-Core Processor TK-57, 1.9 GHz,
2×256 KB L2 cache, and 2 GB DDR2 of RAM.
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Robustness & shrinking for FC & GC: White Matter

(a) RFC (b) IRFC (c) GC

(d) RFC (e) IRFC (f) GC
Figure: (a)&(d) and (b)&(e): same outputs for different seeds; (c)&(f)
GC: dramatic change of output; seeds choice same as in the FC case
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Time & accuracy of FC & GC: segmentation of WM
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FC vs GC: Conclusions

FC and GC quite similar,
yet FC has many advantages over GC:

- FC runs considerably faster than GC
- FC is robust (seed), while GC has shrinkage problem
- FC, unlike GC, easily handles multiple-object segmentation
unless the application requires, in an essential way, the
simultaneous use of
- homogeneity (binary) info on image intensity;
- expected object intensity (unary) info on image intensity;

it makes sense to use FC (more precisely IRFC)
segmentation algorithm, rather than GC algorithm
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Outline

1 The problem of object delineation in a digital image:
translating intuition to energy minimization setup

2 Object cost as a function of object boundary; `p cost

3 Delineation algorithms associated with `p energies

4 Comparison of GC and FC image segmentations

5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

6 Relation between MSF vs OPF: proof
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Forests: the powerhouse behind Dijkstra algorithm

Fix weighted graph G = 〈C,E ,w〉 and ∅ 6= W ⊂ C.

Definition (Spanning Forest w.r.t. W )

A forest for G is any subgraph F = 〈C,E ′〉 of G free of cycles.
F = 〈C,E ′〉 is spanning with respect to W when any connected
component of F contains precisely one element of W .

Example of a spanning

forest w.r.t. W = {s1, s2, t}

Each component

marked by different color

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
.4!.2!

.7!

.7!
1!

.2!
1! 1!1!

.2! .4! 1!

.4!

t!

s2!

s1!

Krzysztof Chris Ciesielski Delineating objects via `p energies 23



Object delineation Defining energies εp algorithms GC vs FC Forests Thm on MSF vs OPF: proof

Forest-generated (IRFC and PW) objects

G = 〈C,E ,w〉 – weighted graph, ∅ 6= W ⊂ C, S ⊂W

Definition (Forest-generated object)

For a spanning forest F w.r.t. W and S ⊂W ,
P(S,F) is a union of all components of F intersecting S.
Note that P(S,F) ∈ P(S,T ) for T = W \ S.

Example (green vertices) of

P(S,F) with S = {s1, s2}.

Outputs of the algorithms we will
discuss, GCsum and PW,

are in the P(S,F) format.

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

!! !! !! !! !!

.2! .4!
.4!.2!

.7!

.7!
1!

.2!
1! 1!1!

.2! .4! 1!

.4!

t!

s2!

s1!
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Optimal Path Forest, OPF

Definition (Optimal Path Forest, OPF)

For a path p = 〈c1, . . . , ck 〉 in G let µ(p) = mini<k w({ck , ck+1}),
the weakest link of p.
A forest F w.r.t. W is path-optimal provided for every c ∈ C,
the unique path pc in F from W to c is µ-optimal in G, i.e.,
µ(pc) ≥ µ(p) for any path p in G from W to c.

For OPF F w.r.t. W , µ(pc) = µC(c,W ) for every c ∈ C
(with µC in the Fuzzy Connectedness sense)

!!!! !!

!!

s! t!c!

d!

.2! .1!

.6!.2!

(g) OPF, W = {s, t}

!!!! !!

!!

s! t!c!

d!

.2! .1!

.6!.2!

(h) another OPF

!! !

!

s! t!c!

d!

.2! .1!

.6!.2!

(i) not OPF
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GCmax algorithm and IRFC

Theorem ([KC et al.] OPF object minimizing ε∞ )

There exists the smallest Pmin ∈ P(S,T ) in form P(S,F),
where F is an OPF w.r.t. S ∪ T .

F is found by GCmax, a version of Dijkstra’s shortest path
algorithm, in a linear time w.r.t. |C|+ M,

where M is the size of the range of w.

In practice, O(|C|+ M) = O(|C|).
The object Pmin, returned by GCmax, coincides with the Iterative
Relative Fuzzy Connectedness, IRFC, object.
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Maximal Spanning Forest, MSF
Definition (Maximal Spanning Forest, MSF)

A forest F = 〈C,E ′〉 w.r.t. W is maximal spanning provided∑
e∈E ′ w(e) ≥∑e∈Ê ′ w(e) for every forest F̂ = 〈C, Ê ′〉 w.r.t. W

!!!!

!! !!

s!

c!

t!

d!

.5!

.2!

.1!.1!

(j) OPF w.r.t. {s, t}, not MSF

!!!!

!! !!

s!

c!

t!

d!

.5!

.2!

.1!.1!

(k) MSF and OPF

Theorem ([Audigier & Lotufo], [Cousty et al.])

Every MSF is OPF, but not the other way around.
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MSF and Power Watershed, PW, algorithm

Theorem ([C. Couprie et al.] PW output as MSF)

PW algorithm returns P(S,F) for a MSF F w.r.t. S ∪ T .

F is found by PW via a complicated version of Kruskal’s
algorithm and, locally, Random Walker algorithm.

Since

IRFC object is indicated by OPF,
PW object is indicated by MSF, and
every MSF is OPF

What is the relation between IRFC and PW objects?
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New results on GCmax, MSF, and OPF

Theorem ([KC et al.] MSF vs OPF)

If Pmin is the output of GCmax (the smallest P(S,F), with with F
is being OPF w.r.t. S ∪T), then Pmin = P(S, F̂) for some MSF F̂.

If F is a MSF w.r.t. S ∪ T , then P(S,F) minimizes energy ε∞ (in
P(S,T )).

P(S,F), with F being OPF w.r.t. S ∪ T , need not minimize ε∞.

In other words

Pmin ∈ PMSF (S,T ) ⊂ POPF (S,T ) ∩ Pε∞(S,T ),

where PMSF (S,T ) = {P(S,F) : F is MSF}, similarly for OPF,
and Pε∞(S,T ) is the set of all ε∞-optimizers.
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Outline

1 The problem of object delineation in a digital image:
translating intuition to energy minimization setup

2 Object cost as a function of object boundary; `p cost

3 Delineation algorithms associated with `p energies

4 Comparison of GC and FC image segmentations

5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

6 Relation between MSF vs OPF: proof

Krzysztof Chris Ciesielski Delineating objects via `p energies 29



Object delineation Defining energies εp algorithms GC vs FC Forests Thm on MSF vs OPF: proof

Outline of the proof of Main Theorem

Describe Dijkstra’s algorithm that gives OPF F with
Pmin = P(S,F). Notice, it is the smallest set in POPF (S,T ).

Use Kruskal’s algorithm to find MSF F̂ with Pmin = P(S, F̂).

Show that P(S, F̂) ∈ Pε∞(S,T ) whenever F̂ is MSF.
An argument is a variant of a proof that Kruskal’s algorithm
indeed returns MSF.

Give examples, showing that no inclusion can be reversed.
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Dijkstra’s algorithm DA: standard vs our version

G = 〈C,E ,w〉, F generated forest w.r.t. W , S ⊂W ⊂ C
pc – unique path in F from W to c ∈ C

Standard DA “grows” tree from a single source set W .
We use DA to grow forest with a multiple sources set W .

In standard DA, path pc has the smallest length.
(It optimizes path measure “sum of weights of all links.”)

We use DA to optimize pc w.r.t. “weakest link measure” µ.

Newest variation:
We insure that Pmin = P(F,S) is the smallest possible.
No control of algorithm’s output among Pε∞(S,T ) was
insurable before introduction of GCmax (as far as we know).

Krzysztof Chris Ciesielski Delineating objects via `p energies 31



Object delineation Defining energies εp algorithms GC vs FC Forests Thm on MSF vs OPF: proof

GCmax (i.e., our DA) data structure

F is grown from roots, W = S ∪ T , via adding edges.

F is indicated via path-predecessor map Pr :
Pr [W ] = {∅}, Pr(c) =predecessor of c in pc for c /∈W

R(c) indicates root of c: the initial w ∈W belonging to pc

We use preorder relation ≺ on R× C:

〈x , c〉 ≺ 〈y ,d〉 ⇐⇒ x < y or (x = y & d ∈ T & c /∈ T )

Initialize µ(c) = 1, R(c) = c, Pr(c) = ∅ for c ∈W
Initialize µ(c) = −1, R(c) = c, Pr(c) = c for c ∈ C \W
Insert every c ∈ C into queue Q according to priority �
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The GCmax algorithm

begin
1. while Q is not empty do
2. remove from Q a �-maximal spel c;
3. for every d with {c,d} ∈ E do
4. if 〈µ(d),R(d)〉 ≺ 〈min{µ(c),w{c,d}},R(c)〉 then
5. set µ(d) = min{µ(c),w{c,d}};
6. set R(d) = R(c) and Pr(d) = c;
7. remove temporarily d from Q;
8. push d to Q with the current values of µ and R;
9. endif ;

10. endfor ;
11. endwhile;
12. return µ(·,W ) = µ(·), F indicated by Pr , Pmin = P(S,F);
end
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Properties of GCmax; correctness

line 2: Each c ∈ C is removed precisely once from Q
with µ(c) = µ(c,W )
with ≺-maximal value of 〈µ(c),R(c)〉

Proof: If the above fails for a c ∈ C and c comes from the
fist execution of line 2 when this happens, then, in earlier
execution of lines 4-9, the value 〈µ(c),R(c)〉 would have
been increased.

So, indeed F is OPF and
Pmin = P(S,F) is the ⊂-smallest element of POPF (S,T ).

Next we show that Pmin = P(S, F̂) for some MSF F̂
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Kruskal’s algorithm KA

Kruskal’s algorithm creates MSF F̂ for G = 〈C,E ,w〉 as follows:

it lists all edges of the graph in a queue Q such that their
weights form a non-increasing sequence;
it removes consecutively the edges from Q, adding to F̂
those, which addition creates, in the expanded F̂, neither a
cycle nor a path between different vertices from W ; other
edges are discarded.

This schema has a leeway in choosing the order of edges in Q:
those that have the same weight can be ordered arbitrarily.

This leeway will be exploited in the next proof.
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Construction of MSF F̂ with Pmin = P(S, F̂)

Put B = bd(P(S,F)).

Insert every e ∈ E into queue Q such that:

the weights of e ∈ Q are in a non-increasing order;
among the edges with the same weight,

all those from E \ B precede all those from B.

Apply Kruskal’s algorithm to this Q to get MSF F̂.

F̂ is an MSF by the power of Kruskal’s algorithm.

To prove that P(S, F̂) = P(S,F)
it is enough to show that F̂ ∩ B = ∅.

Krzysztof Chris Ciesielski Delineating objects via `p energies 36



Object delineation Defining energies εp algorithms GC vs FC Forests Thm on MSF vs OPF: proof

F̂ is disjoint with B = bd(P(S,F))
Let e = {c,d} ∈ B = bd(P(S,F)), c ∈ P(T ,F). We show that:

In KA, adding e to F̂ would create a path from S to T .

Let pc and pd be the paths in F from W to c and d . Then

µ(pc) ≥ we and µ(pd) ≥ we. (1)

Proof: If µ(pc) > µ(pd), then we ≤ µ(pd), since otherwise
µ(pd) < min{µ(pc),we} ≤ µ(d ,W ),

contradicting optimality of pd .

Similarly, µ(pc) < µ(pd) implies we ≤ µ(pc).

Finally, µ(pc) = µ(pd) implies we < µ(pc) = µ(pd), since
otherwise GCmax (during the execution of lines 6-8 for c and d)
would reassign d to P(T ,F), contradicting d ∈ P(S,F).
So, (1) is proved.
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F̂ is disjoint with B = bd(P(S,F)), continuation

For e = {c,d} ∈ B = bd(P(S,F)), c ∈ V \ P(S,F), we show:

In KA, adding e to F̂ would create a path from S to T .

For paths pc and pd in F from W to c and d ,

µ(pc) ≥ we and µ(pd) ≥ we.

Let E ′ = {e′ ∈ E : we′ ≥ we} \ B. Then, F̂ ∩ E ′ is already
constructed by KA. It is enough to show that

In Ĝ = 〈V , F̂ ∩ E ′〉 there is path p̂d from S to d and p̂c from T to c.

Proof. The component C of d in Ĝ intersects S, as otherwise
there is an ê ∈ pd ⊂ E ′ only one vertex of which intersects C
and ê ∈ E ′ would have been added to F̂, but was not. So,
indeed, there is p̂d as claimed. Similarly, for p̂c . QED
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If F is an MSF, then P(S,F) minimizes ε∞

Let F be an MSF and P = P(S,F). Note that

εmin
def
= {ε∞(P) : P ∈ P(S,T )} = max{µ(p) : p is from S to T}

We need to show that ε∞(P) ≤ εmin. Assume it is not.

Then, there is an e = {c,d} ∈ E with c ∈ P = P(S,F) ∩ bd(P)
for which we > εmin. Let pc and pd be the paths in F from W to
c and d . Then either µ(pc) < we or µ(pd) < we; otherwise there
is path p from S to T with µ(p) = we > εmin, a contradiction.

Assume that µ(pc) < we. Then pc = 〈c1, . . . , ck 〉 with k > 1 and
e′ = {ck−1, ck} has weight ≤ µ(pc) < we. But then
F′ = F ∪ {e} \ {e′} is a spanning forest w.r.t. W with
w(F′) = w(F) + we − we′ > w(F), contradicting that F is MSF.
QED
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Summary

We proved that GCmax algorithm returns OPF F for which
P(S,F) minimizes ε∞(P)

def
= maxe∈bd(P) w(e) in P(S,T ).

Moreover,

Pmin ∈ PMSF (S,T ) ⊂ POPF (S,T ) ∩ Pε∞(S,T ),

where PMSF (S,T ) = {P(S,F) : F is MSF}, similarly for OPF,
and Pε∞(S,T ) is the set of all ε∞-optimizers.

None of the inclusions can be reversed.
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Thank you for your attention!
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