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Object delineation
QOutline
0 The problem of object delineation in a digital image:
translating intuition to energy minimization setup
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Object delineation

Example 1, 2D, of object segmentation/

Delineation version 2 Delineation version 3
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Object delineation

Example 2, 3D: a CT image of patient’s cervical spine

A slice of an original 3D image Surface rendition of segmented
three vertebrae, together

Color surface rendition of the segmented three vertebra
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Object delineation

Example 3: An MR angiography image of the body
region from belly to knee.

Rendition of an original 3D, A surface rendition of the entire
contrast enhanced, image vascular tree

Color surface rendition of segmented arterial (red) and veinous (blue) trees
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Object delineation

Image segmentation — formal setting

@ An (n-dimensional) image is a map f from C c R” into R¥

The value f(c) represents image intensity at ¢, a
k-dimensional vector each component of which indicates a
measure of some aspect of the signal, like color.

@ Segmentation problem: Given an image f: C — R,

find a “desired” family S(f) = {P4, ..., Pm} of subsets of C.

@ Delineation problem (on which we concentrate)

iswhen m=1,i.e., when S(f)=P cC C.
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Object delineation

Delineation of an image f: C — R¥ — formal setting

How to express that S(f) = P C C is desired?
There is no magic formulation that expresses all desires!

Several practical “solutions” exist. We use here the following:

@ Fix seed sets:
S indicating the foreground object P, (i.e., S ¢ P), and
indicating the background (i.e., 7 N P = ().

This restricts the search space for S(f) to the family
P(S, T)={PCcC\T:ScCP}

@ Define an energy/cost function : P(0,0) — [0, 0o)

@ Declare S(f) to be desired when it minimizes € on P(S, T).
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Object delineation

Digital vs “continuous” image f: C — RX

The above set-up makes sense and was studied for the images
with scene C C R” being open bounded region.

We discuss only digital images, with finite rectangular scenes:

Example of sets in P(S, T)
with S = {s},
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Defining energies
QOutline

9 Object cost as a function of object boundary; ¢, cost
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Defining energies

Heuristic and the definition of boundary

Heuristic: The objects boundary areas JO;

should be identifiable in the image, as the %/%\ ,

areas of sharp image intensity change. (2 IX\? 4) ]
‘0.

1
1
4

What constitutes boundary bd(P) of P? V\%

——>ie——>ie——>

Desired object

Need graph (or topological) structure G = (V, E) on C:

@ Pixels ¢ € C are its vertices, V = C;

@ Edges {c,d} € E are “nearby” vertices (e.g. as in figure).

bd(P) is the set of all edges {c,d} € Ewithce Pandd ¢ P
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Defining energies

Weighted graphs and ¢, cost functions, 1 < p < oo

Assume that with every edge e = J\
{c,d} € E of an image f we have as- )
sociated its weight/cost w(e) > 0, which 2 g\ !
is low, for big ||f(c) — f(d)]|. ("\ ) ,
\KQ}AA 1
Typically, w(e) = e IO~1(@)1/o* seefig. 4/ .k

Desired object
If Fp: E — [0,00), Fp(e) = w(e) for e € bd(P) and Fp(e) =0
for e ¢ bd(P), then ¢, cost is defined as

: (2 W(e)p)1/p it p < oo
p(P) = || Fpllp = § \zeehilP) e
MaXecha(P) W(€) if p= oc.
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ep algorithms
Outline

e Delineation algorithms associated with ¢, energies

Krzysztof Chris Ciesielski Delineating objects via £y energies 9



ep algorithms

FC and GC algorithms as minimizers of ¢,

def (Zeebd(P) W(e)p)1/p if p < o0
ep(P) = [IFpllp = ,
MaXeepa(p) W(€) if p= o0.

p=1:1(P)=>gcoap) W(€);
Optimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm optimizes ¢1.

p = 00! oo(P)=MaXecpa(p) W(€);
Optimization solved by (versions of) Dijkstra algorithm.
€00 Optimized objects are returned by the algorithms:
Relative Fuzzy Connectedness, RFC, lterative RFC, IRFC,
and [C. Couprie et al, 2011].
p = 2: related to Random Walker, RW, algorithm [Grady, 2006],
see next slides.
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ep algorithms
Fuzzy sets

Amap x: C — [0,1] (i.e., x € [0, 1]°) can be considered as a
fuzzy set, with x(c) giving the degree of membership of c in it.

A hard set P c C is identified with a fuzzy set (binary image)
xp € {0,1}¢ € [0,1]¢, xp(c) = 1iff c € P.

For x € [0,1]€ let £5(x) = ||Fx||p, Where Fyx: E — [0, 00),
Fe({c,d}) = [x(c) - x(d)|w({c.d}) for {c,d} € E.
Then 5(P) = £p(xp). We can minimize £, on

P(S, T)={x:x(c)=1force S& x(c)=0force T}

instead of e, on P(S, T) = P(S, T) N {0,1}°.
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Random Walker, RW, algorithm

@ RW finds (the unique) £, minimizer on (S, T).
@ Defines its output as P = {c: x(c) > .5}.

Problems with RW:

@ Output need not be connected (even when S and T are).
@ P need not minimize e, on P(S, T).

Neither of this happens for ¢¢ (i.e. GC) or e, (i.e. RFC or PW):

Thm: For p € {1, 00}, any minimizer of £, on P(S, T) actually
belongs to P(S, T).
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ep algorithms

(Non)-uniquness of the minimizers for €1 and e

Let Pp(S, T) = {P € P(S, T): P minimizes ¢, on P(S, T)}.
Both P¢(S, T) and P (S, T) may have more than one element.

However, the outputs of the standard versions of the algorithms:

@ GC, from P4(S, T),
@ RFC, from P (S, T), and
@ IRFC, from Po(S, T)

are unique in the sense of the next theorem.
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ep algorithms

GC & FC segmentations — comparison theorem 1

Theorem (Argument minimality)
Forp € {1,<}, P.(S, T) contains the C-smallest object.

@ GC algorithm returns the smallest set in P1(S, T).
@ RFC algorithm returns the smallest set in Poo(S, T).
@ /RFC algorithm returns the smallest set in a refinement
P:i(S, T)of Puo(S, T).
Moreover, if n is the size of the image (scene), then
@ GC runs in time of order O(n®) (the best known algorithm)
or O(n??®) (the fastest currently known algorithm)

@ Both RFC and IRFC run in time of order O(n) (for standard
medical images — the intensity range size not too big) or
O(nlIn n) (the worst case scenario)
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ep algorithms

GC & FC — asymptotic equivalence

Theorem (Asymptotic equivalence of GC and FC)

Let PJ'(S, T) be the family Pp(S, T) for the edge weight
function w replaced by its m-th power w™. Then

@ PT(S, T) =P(S, T) and similarly for IRFC algorithm.
So, the outputs of RFC and IRFC are unchanged by m.
@ P{"(S,T) C Px(S, T) for m large enough.
In particular, if P~.(S, T) has only one element, then

the output of GC coincides with the outputs of RFC and IRFC
for m large enough.
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GCvs FC
Outline

e Comparison of GC and FC image segmentations
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GCvs FC

Advantages of FC over GC — theoretical angle

Speed: FC algorithms run a lot faster than GC algorithms:
O(n) (or O(nIn n)) versus O(n3) (or O(n?3)).

Robustness: RFC & IRFC are unaffected by small seed changes.
GC is sensitive for even small seed changes.

Shrinking: GC chooses objects with small size boundary
(often with edges with high weights);
No such problem for RFC & IRFC

Multiple objects: FC framework handles easily the segmentation of
multiple objects, same running time and robustness.
GC in such setting leads to NP-hard problem,
so (for precise delineation) it runs in exponential time

lterative approach: RFC has an iterative approach refinement;
No such refinement methods exist for GC at present.
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Advantages of GC over FC

Boundary smoothness: GC chooses small boudary, so it
naturally smooths it; in many (but not all) medically
important delineations, this is a desirable feature.

Basic FC framework has no boundary smoothing;
if desirable, smoothing requires post processing

Combining image homogeneity info with known object intensity:
GC naturally combines information on image
homogeneity (binary relation on voxels)
with information on expected object intensity
(unary relation on voxels);

Combining such informations is difficult to achieve
in the FC framework.
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Setup of experiments:

@ In each experiment we used 20 MR BrainWeb phantom
images (simulated T1 acquisition); graphs show averages.

@ Sets of seeds were generated, from known true binary
segmentations, by applying erosion operation:
the bigger erosion radius, the smaller the seed sets.

@ The weight map w(c, d), same for FC and GC, was
defined from the image intensity function f as
w(c, d) = —|G(f(c)) — G(f(d))],
where G is an appropriate Gaussian.
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Setup of experiments:

Data parameters: the simulated T1 acquisition were as follows:
spoiled FLASH sequence with TR=22ms and
TE=9.2ms, flip angle = 30°, voxel size
=1 x 1 x Tmm3, noise = 3%, and background
non-uniformity = 20%.

Computer: Experiments were run on PC with an AMD Athlon

64 X2 Dual-Core Processor TK-57, 1.9 GHz,
2x256 KB L2 cache, and 2 GB DDR2 of RAM.
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GCvs FC

Robustness & shrinking for FC & GC: White Matter

(d) RFC (e) IRFC (f) GC
Figure: (a)&(d) and (b)&(e): same outputs for different seeds; (c)&(f)
GC: dramatic change of output; seeds choice same as in the FC case
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GCvs FC

Time & accuracy of FC & GC: segmentation of WM
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GCvs FC
FC vs GC: Conclusions

@ FC and GC quite similar,
yet FC has many advantages over GC:
- FC runs considerably faster than GC
- FC is robust (seed), while GC has shrinkage problem
- FC, unlike GC, easily handles multiple-object segmentation

@ unless the application requires, in an essential way, the
simultaneous use of
- homogeneity (binary) info on image intensity;
- expected object intensity (unary) info on image intensity;

it makes sense to use FC (more precisely IRFC)
segmentation algorithm, rather than GC algorithm

Krzysztof Chris Ciesielski Delineating objects via £y energies 22



Forests
QOutline

e Spanning forests, Dijkstra algorithm, IRFC and PW objects
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Forests

Forests: the powerhouse behind Dijkstra algorithm

Fix weighted graph G= (C,E,w) and ) # W c C.

Definition (Spanning Forest w.r.t. W)

A forest for G is any subgraph F = (C, E’) of G free of cycles.
F = (C, E’) is spanning with respect to W when any connected
component of F contains precisely one element of W.

Example of a spanning

forestw.r.t. W = {sq, s, t} 2 s 4 !
5 @e—
Each component A 1 1
. VI Smvantbr:
marked by different color 2 4 !
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Forests

Forest-generated (IRFC and PW) objects
G = (C, E, w) — weighted graph, 0#WcC, Scw

Definition (Forest-generated object)

For a spanning forest F w.r.t. Wand S c W,

P(S,F) is a union of all components of F intersecting S.
Note that P(S,F) € P(S,T) for T= W\ S.

Example (green vertices) of

Outputs of the algorithms we will
discuss, GCym and PW,

are in the P(S,F) format.
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Optimal Path Forest, OPF

Definition (Optimal Path Forest, OPF)
Forapath p=(cy,..., k) in Glet u(p) = minjx w({Cx, Ck+1}),

A forest F w.r.t. W is path-optimal provided for every ¢ € C,
the unique path p; in F from W to c is u-optimal in G, i.e.,
wu(pc) > wp(p) for any path pin G from W to c.

For OPF F w.r.t. W, u(pc) = uC(c, W) for every c € C
(with 1€ in the Fuzzy Connectedness sense)

*d *d
/ P / . s
N
(9) OPF, W = {s, t} (h) another OPF (i) not OPF
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GCnax algorithm and IRFC

Theorem ([KC et al] OPF object minimizing ¢ )

There exists the smallest Pnin € P(S, T) in form P(S,F),
where F is an OPF w.rt. SUT.

I is found by GCnax, a version of Dijkstra’s shortest path
algorithm, in a linear time w.r.t. |C| + M,
where M is the size of the range of w.

In practice, O(|C| + M) = O(|C]).

The object Pnn, returned by GCnax, coincides with the lterative
Relative Fuzzy Connectedness, IRFC, object.
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Forests

Maximal Spanning Forest, MSF

Definition (Maximal Spanning Forest, MSF)

A forest F = (C, E') w.r.t. W is maximal spanning p[ovided
Y ecer W(€) = > . w(e) for every forest IF = (C, E') w.rt. W

ce — * g4 Ce *d
2 2
A ‘ A A A
S 5 t S ) t
() OPF w.r.t. {s,t}, not MSF (k) MSF and OPF

Theorem ([Audigier & Lotufo], [Cousty et al.])
Every MSF is OPF, but not the other way around.
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Forests

MSF and Power Watershed, PW, algorithm

Theorem ([C. Couprie et al.] PW output as MSF)
PW algorithm returns P(S,F) fora MSFTF w.rt. SUT.

F is found by PW via a complicated version of Kruskal’s
algorithm and, locally, Random Walker algorithm.

Since

@ IRFC object is indicated by OPF,
@ PW object is indicated by MSF, and
@ every MSF is OPF

What is the relation between IRFC and PW objects?
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Forests

New results on GChax, MSF, and OPF

Theorem ([KC et al.] MSF vs OPF)

If Pin is the output of GCmayx (the smallest PA(S, IF), with with IFA
is being OPF w.r.t. SUT), then Pyin, = P(S,F) for some MSFIF.

IfF isa MSF w.rt. SU T, then P(S,TF) minimizes energy s (in
P(S,T))

P(S,TF), with F being OPF w.r.t. SU T, need not minimize €.

In other words
Puin € Puse(S, T) C Popr(S, T) NP-. (S, T),

where Pyse(S, T) = {P(S,F): F is MSF}, similarly for OPF,
and P._ (S, T) is the set of all ,.-optimizers.
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Thm on MSF vs OPF: proof
Outline

e Relation between MSF vs OPF: proof
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Thm on MSF vs OPF: proof
Outline of the proof of Main Theorem

@ Describe Dijkstra’s algorithm that gives OPF F with
Prin = P(S,F). Notice, it is the smallest set in Popg(S, T).

@ Use Kruskal’s algorithm to find MSF & with Prin = P(S, ).

@ Show that P(S,F) € P._ (S, T) whenever I is MSF.
An argument is a variant of a proof that Kruskal’s algorithm
indeed returns MSF.

@ Give examples, showing that no inclusion can be reversed.
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Thm on MSF vs OPF: proof

Dijkstra’s algorithm DA: standard vs our version

G=(C,E,w), F generatedforestw.rt. W, ScWcC
pc — unique path in F from Wtoce C

@ Standard DA “grows” tree from a single source set W.
We use DA to grow forest with a multiple sources set W.

@ In standard DA, path p; has the smallest length.
(It optimizes path measure “sum of weights of all links.”)
We use DA to optimize p; w.r.t. “weakest link measure” p.

@ Newest variation:
We insure that Py, = P(F, S) is the smallest possible.
No control of algorithm’s output among P.__ (S, T) was
insurable before introduction of GCmax (as far as we know).

Krzysztof Chris Ciesielski Delineating objects via £y energies 31



Thm on MSF vs OPF: proof

GCnax (i.e., our DA) data structure

@ Fis grown from roots, W = SU T, via adding edges.

F is indicated via path-predecessor map Pr:
Pr{W] = {0}, Pr(c) =predecessor of c in p. for c ¢ W

@ R(c) indicates root of c¢: the initial w € W belonging to p¢

We use preorder relation < on R x C:

(x,c) < (y,d) <= x<yor/( )

Initialize u(c) =1, R(c) =c, Pr(c) =0 force W
Initialize p(c) = —1, R(c) =c¢, Pr(c)=cforce C\ W
Insert every ¢ € C into queue Q according to priority <
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Thm on MSF vs OPF: proof
The GCpax algorithm

begin

1. while Q is not empty do

2. remove from Q a <-maximal spel c;

3 for every d with {c,d} € E do

4 if (u(d), R(d)) < (min{u(c), Wie.ay}, R(c)) then

5. set p(d) = min{u(c), Wicqy };

6. set R(d) = R(c) and Pr(d) = c;

7 remove temporarily d from Q;
8. push d to Q with the current values of © and R;

9. endif;
10. endfor;
11. endwhile;
12. return pu(-, W) = u(+), F indicated by Pr, Pmin = P(S,F);
end
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Thm on MSF vs OPF: proof
Properties of GCnax; correctness

line 2: Each c € C is removed precisely once from Q
e with u(c) = u(c, W)
e with <-maximal value of {u(c), R(c))

Proof: If the above fails for a ¢ € C and ¢ comes from the
fist execution of line 2 when this happens, then, in earlier
execution of lines 4-9, the value (u(c), R(c)) would have

been increased.

So, indeed F is OPF and
Prmin = P(S,F) is the C-smallest element of Pppe(S, T).

Next we show that Prin = P(S, ) for some MSF [
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Thm on MSF vs OPF: proof
Kruskal’s algorithm KA

Kruskal’s algorithm creates MSF [ for G = (C, E, w) as follows:

@ it lists all edges of the graph in a queue Q such that their
weights form a non-increasing sequence;

@ it removes consecutively the edges from Q, adding to I
those, which addition creates, in the expanded T, neither a
cycle nor a path between different vertices from W; other
edges are discarded.

This schema has a leeway in choosing the order of edges in Q:
those that have the same weight can be ordered arbitrarily.

This leeway will be exploited in the next proof.
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Thm on MSF vs OPF: proof

Construction of MSF I with Py = P(S,F)

Put B = bd(P(S,F)).
Insert every e € E into queue Q such that:

@ the weights of e € Q are in a non-increasing order;

@ among the edges with the same weight,
all those from E \ B precede all those from B.

Apply Kruskal’s algorithm to this Q to get MSF F.
[ is an MSF by the power of Kruskal’s algorithm.

To prove that P(S, ) = P(S,F) )
it is enough to show that F n B = 0.
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Thm on MSF vs OPF: proof

I is disjoint with B = bd(P(S, F))
Let e = {c,d} € B="1bd(P(S,F)), c € P(T,F). We show that:

In KA, adding e to ¥ would create a path from Sto T.

Let pc and py be the paths in F from W to ¢ and d. Then
1(Pc) = We and p(pg) = We. (1)

Proof: If u(pc) > p(pqg), then we < u(pg), since otherwise

m(pg) < min{u(pc), we} < pu(d, W),
contradicting optimality of py.

Similarly, p(pe) < 1(pg) implies we < p(pe)-

Finally, 1(pc) = 1u(pa) implies we < u(pc) = 1(pa), since
otherwise GCnax (during the execution of lines 6-8 for ¢ and d)
would reassign d to P(T,F), contradicting d € P(S,F).

So, (1) is proved.
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Thm on MSF vs OPF: proof

[ is disjoint with B = bd(P(S, F)), continuation

Fore={c,d} € B=0bd(P(S,F)),ce V\ P(S,F), we show:
In KA, adding e to ¥ would create a path from Sto T.
For paths p; and py in F from W to ¢ and d,

11(Pc) > We and ju(pg) > We.

Let E' = {€ € E: wo > we}\ B. Then, ' N E’ is already
constructed by KA.

In G = (V, ' n E') there is path pg from S to d and p from T to c.

Proof. The component C of d in G intersects S, as otherwise
there is an & € py C E’ only one vertex of which intersects C
and & € E’ would have been added to I, but was not. So,
indeed, there is py as claimed. Similarly, for p.. QED
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Thm on MSF vs OPF: proof

If F is an MSF, then P(S,F) minimizes .,

Let F be an MSF and P = P(S,F). Note that

def

Emin = {€0o(P): P € P(S,T)} = max{u(p): pisfrom Sto T}
Assume it is not.

Then, thereisan e = {c,d} € E withc € P = P(S,F)Nbd(P)
for which we > enin. Let pc and pg be the paths in F from W to
c and d. Then either p(pc) < we or u(py) < we; otherwise there
is path p from Sto T with u(p) = we > emin, @ contradiction.

Assume that u(pe) < we. Then p; = (¢4, ..., ck) with kK > 1 and
€ = {ck_1,ck} has weight < u(pc) < we. But then
F'=FU{e}\ {€} is a spanning forest w.r.t. W with

w(F') = w(F) + we — we > w(F), contradicting that F is MSF.
QED
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Thm on MSF vs OPF: proof
Summary

We proved that GCnax algorithm returns OPF T for which
P(S,F) minimizes ¢.(P) & maxecoa(py w(e) in P(S, T).

Moreover,
Pmin S PMSF(S7 T) - POPF(87 T) N Pfoc(sf T)7

where Pyse(S, T) = {P(S,F): F is MSF}, similarly for OPF,
and P._ (S, T) is the set of all e-optimizers.

None of the inclusions can be reversed.
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Thm on MSF vs OPF: proof

Thank you for your attention!
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