GC vs FC

Delineating objects in images via minimization of ℓ_p energies; spanning forests via Dijkstra's and Kruskal's algorithms

Krzysztof Chris Ciesielski

Department of Mathematics, West Virginia University and MIPG, Departmentof Radiology, University of Pennsylvania

Based on a joint work with J.K. Udupa, A.X. Falcão, and P.A.V. Miranda

CCNY joint CS-Math Colloquium, May 8, 2013

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- 2 Object cost as a function of object boundary; ℓ_p cost
- 3 Delineation algorithms associated with ℓ_p energies
- 4 Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects
- 6 Relation between MSF vs OPF: proof

ヘロト ヘヨト ヘヨト

- 3 Delineation algorithms associated with ℓ_p energies
- 4 Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects
- 6 Relation between MSF vs OPF: proof

ヘロト ヘワト ヘビト ヘビト

Object delineation

Defining energie

p algorithms

GC vs F

Thm on MSF vs OPF: proof

Example 1, 2D, of object segmentation/delineation

An image of peppers

Delineation version 2

Delineation version 1

Delineation version 3

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Object delineation

Defining energies

algorithms

GC vs F0

Thm on MSF vs OPF: proof

Example 2, 3D: a CT image of patient's cervical spine

A slice of an original 3D image

Surface rendition of segmented three vertebrae, together

Color surface rendition of the segmented three vertebra

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Example 3: An MR angiography image of the body region from belly to knee.

Rendition of an original 3D, contrast enhanced, image

A surface rendition of the entire vascular tree

Color surface rendition of segmented arterial (red) and veinous (blue) trees

• An *(n-dimensional) image* is a map f from $C \subset \mathbb{R}^n$ into \mathbb{R}^k

The value f(c) represents image intensity at c, a k-dimensional vector each component of which indicates a measure of some aspect of the signal, like color.

• Segmentation problem: Given an image $f: C \to \mathbb{R}^k$,

find a "desired" family $S(f) = \{P_1, \ldots, P_m\}$ of subsets of *C*.

• *Delineation problem* (on which we concentrate)

is when m = 1, i.e., when $S(f) = P \subset C$.

ヘロン ヘアン ヘビン ヘビン

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Delineation of an image $f: C \to \mathbb{R}^k$ — formal setting

How to express that $S(f) = P \subset C$ is desired?

There is no magic formulation that expresses all desires!

Several practical "solutions" exist. We use here the following:

Fix seed sets:
 S indicating the foreground object P, (i.e., S ⊂ P), and T indicating the background (i.e., T ∩ P = Ø).

This restricts the search space for S(f) to the family $\mathcal{P}(S, T) = \{P \subset C \setminus T : S \subset P\}$

• Define an energy/cost function $\varepsilon \colon \mathcal{P}(\emptyset, \emptyset) \to [0, \infty)$

• Declare S(f) to be desired when it minimizes ε on $\mathcal{P}(S, T)$.

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Digital vs "continuous" image $f: C \to \mathbb{R}^k$

The above set-up makes sense and was studied for the images with scene $C \subset \mathbb{R}^n$ being open bounded region.

We discuss only digital images, with finite rectangular scenes:

Example of sets in $\mathcal{P}(S, T)$ with $S = \{s\}$, $T = \{t_1, t_2\}$

The problem of object delineation in a digital image: translating intuition to energy minimization setup

2 Object cost as a function of object boundary; ℓ_p cost

- 3 Delineation algorithms associated with ℓ_p energies
- 4 Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects
- 6 Relation between MSF vs OPF: proof

ヘロト ヘアト ヘビト ヘビト

 Object delineation
 Defining energies
 ε_p algorithms
 GC vs FC
 Forests
 Thm on MSF vs OPF: proof

 Heuristic and the definition of boundary

Heuristic: The objects boundary areas should be identifiable in the image, as the areas of sharp image intensity change.

What constitutes boundary bd(P) of P?

프 에 관 프 어 - - -

Need graph (or topological) structure $G = \langle V, E \rangle$ on C:

- Pixels $c \in C$ are its vertices, V = C;
- Edges $\{c, d\} \in E$ are "nearby" vertices (e.g. as in figure).

bd(P) is the set of all edges $\{c, d\} \in E$ with $c \in P$ and $d \notin P$

Object delineation Defining energies ϵ_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Weighted graphs and ℓ_p cost functions, $1 \le p \le \infty$

Assume that with every edge $e = \{c, d\} \in E$ of an image f we have associated its weight/cost $w(e) \ge 0$, which is low, for big ||f(c) - f(d)||.

Typically,
$$w(e) = e^{-\|f(c) - f(d)\|/\sigma^2}$$
, see fig.

ヘロト ヘアト ヘビト ヘビト

If F_P : $E \to [0, \infty)$, $F_P(e) = w(e)$ for $e \in bd(P)$ and $F_P(e) = 0$ for $e \notin bd(P)$, then ℓ_p cost is defined as

$$arepsilon_{
ho}(P) \stackrel{\mathrm{def}}{=} \|F_P\|_{
ho} = egin{cases} \left(\sum_{e \in \mathrm{bd}(P)} w(e)^{
ho}
ight)^{1/
ho} & \mathrm{if} \
ho < \infty \ \max_{e \in \mathrm{bd}(P)} w(e) & \mathrm{if} \
ho = \infty. \end{cases}$$

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- 2 Object cost as a function of object boundary; ℓ_p cost
- 3 Delineation algorithms associated with ℓ_p energies
- 4 Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects
- 6 Relation between MSF vs OPF: proof

Object delineation

Defining energies

 ε_p algorithms

GC vs FC

FC and GC algorithms as minimizers of ε_p

$$\varepsilon_{p}(P) \stackrel{\text{def}}{=} \|F_{P}\|_{p} = \begin{cases} \left(\sum_{e \in bd(P)} w(e)^{p}\right)^{1/p} & \text{if } p < \infty \\ \max_{e \in bd(P)} w(e) & \text{if } p = \infty \end{cases}$$

p = 1: $\varepsilon_1(P) = \sum_{e \in bd(P)} w(e);$

Optimization solved by classic min-cut/max-flow algorithm.

Graph Cut, GC, delineation algorithm optimizes ε_1 .

$p = \infty$: $\varepsilon_{\infty}(P) = \max_{e \in bd(P)} w(e);$

Optimization solved by (versions of) Dijkstra algorithm.

 ε_{∞} optimized objects are returned by the algorithms: Relative Fuzzy Connectedness, RFC, Iterative RFC, IRFC, and Power Watershed, PW [C. Couprie *et al*, 2011].

p = 2: related to Random Walker, RW, algorithm [Grady, 2006], see next slides. A map $x: C \to [0, 1]$ (i.e., $x \in [0, 1]^C$) can be considered as a *fuzzy set*, with x(c) giving the degree of membership of c in it.

A hard set $P \subset C$ is identified with a fuzzy set (binary image) $\chi_P \in \{0, 1\}^C \subset [0, 1]^C$, $\chi_P(c) = 1$ iff $c \in P$.

For $x \in [0,1]^C$ let $\hat{\varepsilon}_{\rho}(x) = \|F_x\|_{\rho}$, where $F_x \colon E \to [0,\infty)$,

 $F_x(\{c,d\}) = |x(c) - x(d)|w(\{c,d\}) \text{ for } \{c,d\} \in E.$

Then $\varepsilon_p(P) = \hat{\varepsilon}_p(\chi_P)$. We can minimize $\hat{\varepsilon}_p$ on

 $\hat{\mathcal{P}}(S,T) = \{x \colon x(c) = 1 \text{ for } c \in S \& x(c) = 0 \text{ for } c \in T\}$

instead of ε_p on $\mathcal{P}(S, T) = \hat{\mathcal{P}}(S, T) \cap \{0, 1\}^{\mathcal{C}}$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Object delineation Defining energies ϵ_{ρ} algorithms GC vs FC Forests Thm on MSF vs OPF: proof Random Walker, RW, algorithm

- RW finds (the unique) $\hat{\varepsilon}_2$ minimizer on $\hat{\mathcal{P}}(S, T)$.
- Defines its output as $P = \{c \colon x(c) \ge .5\}$.

Problems with RW:

- Output need not be connected (even when S and T are).
- **2** *P* need not minimize ε_2 on $\mathcal{P}(S, T)$.

Neither of this happens for ε_1 (i.e. GC) or ε_∞ (i.e. RFC or PW):

Thm: For $p \in \{1, \infty\}$, any minimizer of $\hat{\varepsilon}_p$ on $\hat{\mathcal{P}}(S, T)$ actually belongs to $\mathcal{P}(S, T)$.

ヘロト 人間 ト ヘヨト ヘヨト

Let $\mathcal{P}_{p}(S,T) = \{ P \in \mathcal{P}(S,T) \colon P \text{ minimizes } \varepsilon_{p} \text{ on } \mathcal{P}(S,T) \}.$

Both $\mathcal{P}_1(S, T)$ and $\mathcal{P}_{\infty}(S, T)$ may have more than one element.

However, the outputs of the standard versions of the algorithms:

- GC, from $\mathcal{P}_1(S, T)$,
- RFC, from $\mathcal{P}_{\infty}(S, T)$, and
- IRFC, from $\mathcal{P}_{\infty}(\mathcal{S}, T)$

are unique in the sense of the next theorem.

ヘロン 人間 とくほとくほとう

Object delineation Defining energies ε_{ρ} algorithms GC vs FC Forests Thm on MSF vs OPF: proof GC & FC segmentations — comparison theorem 1

Theorem (Argument minimality)

For $p \in \{1, \infty\}$, $\mathcal{P}_{\varepsilon}(S, T)$ contains the \subset -smallest object.

- GC algorithm returns the smallest set in $\mathcal{P}_1(S, T)$.
- *RFC* algorithm returns the smallest set in $\mathcal{P}_{\infty}(S, T)$.
- *IRFC* algorithm returns the smallest set in a refinement $\mathcal{P}^*_{\infty}(S,T)$ of $\mathcal{P}_{\infty}(S,T)$.

Moreover, if n is the size of the image (scene), then

- GC runs in time of order $O(n^3)$ (the best known algorithm) or $O(n^{2.5})$ (the fastest currently known algorithm)
- Both RFC and IRFC run in time of order O(n) (for standard medical images — the intensity range size not too big) or O(n ln n) (the worst case scenario)

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (Asymptotic equivalence of GC and FC)

Let $\mathcal{P}_p^m(S, T)$ be the family $\mathcal{P}_p(S, T)$ for the edge weight function w replaced by its *m*-th power w^m . Then

- *P*^m_∞(S, T) = *P*_∞(S, T) and similarly for IRFC algorithm.
 So, the outputs of RFC and IRFC are unchanged by m.
- $\mathcal{P}_1^m(S,T) \subseteq \mathcal{P}_\infty(S,T)$ for m large enough.

In particular, if $\mathcal{P}_{\infty}(S, T)$ has only one element, then the output of GC coincides with the outputs of RFC and IRFC for m large enough.

くロト (過) (目) (日)

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- 2 Object cost as a function of object boundary; ℓ_p cost
- 3 Delineation algorithms associated with ℓ_p energies
- Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects
- 6 Relation between MSF vs OPF: proof

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Advantages of FC over GC — theoretical angle

Speed: FC algorithms run a lot faster than GC algorithms: O(n) (or $O(n \ln n)$) versus $O(n^3)$ (or $O(n^{2.5})$).

- Robustness: RFC & IRFC are unaffected by small seed changes. GC is sensitive for even small seed changes.
 - Shrinking: GC chooses objects with small size boundary (often with edges with high weights); No such problem for RFC & IRFC

Multiple objects: FC framework handles easily the segmentation of multiple objects, same running time and robustness. GC in such setting leads to NP-hard problem, so (for precise delineation) it runs in exponential time

Iterative approach: RFC has an iterative approach refinement; No such refinement methods exist for GC at present.

Boundary smoothness: GC chooses small boudary, so it naturally smooths it; in many (but not all) medically important delineations, this is a desirable feature.

Basic FC framework has no boundary smoothing; if desirable, smoothing requires post processing

Combining image homogeneity info with known object intensity: GC naturally combines information on image homogeneity (binary relation on voxels) with information on expected object intensity (unary relation on voxels);

Combining such informations is difficult to achieve in the FC framework.

- In each experiment we used 20 MR BrainWeb phantom images (simulated T1 acquisition); graphs show averages.
- Sets of seeds were generated, from known true binary segmentations, by applying erosion operation: the bigger erosion radius, the smaller the seed sets.
- The weight map w(c, d), same for FC and GC, was defined from the image intensity function f as w(c, d) = -|G(f(c)) G(f(d))|, where G is an appropriate Gaussian.

・ 同 ト ・ ヨ ト ・ ヨ

Data parameters: the simulated T1 acquisition were as follows: spoiled FLASH sequence with TR=22ms and TE=9.2ms, flip angle = 30° , voxel size = $1 \times 1 \times 1$ mm³, noise = 3%, and background non-uniformity = 20%.

Computer: Experiments were run on PC with an AMD Athlon 64 X2 Dual-Core Processor TK-57, 1.9 GHz, 2×256 KB L2 cache, and 2 GB DDR2 of RAM.

・ 同 ト ・ ヨ ト ・ ヨ ト

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof **Robustness & shrinking for FC & GC: White Matter**

(c) GC

(雪) (ヨ) (ヨ)

(d) RFC (e) IRFC (f) GC Figure: (a)&(d) and (b)&(e): same outputs for different seeds; (c)&(f) GC: dramatic change of output; seeds choice same as in the FC case

Krzysztof Chris Ciesielski Delineating objects via ℓ_p energies 21 э

- FC and GC quite similar,
 - yet FC has many advantages over GC:
 - FC runs considerably faster than GC
 - FC is robust (seed), while GC has shrinkage problem
 - FC, unlike GC, easily handles multiple-object segmentation
- unless the application requires, in an essential way, the simultaneous use of
 - homogeneity (binary) info on image intensity;
 - expected object intensity (unary) info on image intensity;

it makes sense to use FC (more precisely IRFC) segmentation algorithm, rather than GC algorithm

ヘロト ヘ戸ト ヘヨト ヘヨト

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- 2 Object cost as a function of object boundary; ℓ_p cost
- 3 Delineation algorithms associated with ℓ_p energies
- 4 Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects
 - 6 Relation between MSF vs OPF: proof

ヘロト ヘワト ヘビト ヘビト

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Forests: the powerhouse behind Dijkstra algorithm

Fix weighted graph $G = \langle C, E, w \rangle$ and $\emptyset \neq W \subset C$.

Definition (Spanning Forest w.r.t. W)

A *forest* for *G* is any subgraph $\mathbb{F} = \langle C, E' \rangle$ of *G* free of cycles. $\mathbb{F} = \langle C, E' \rangle$ is *spanning with respect to W* when any connected component of \mathbb{F} contains precisely one element of *W*.

Example of a spanning

forest w.r.t.
$$W = \{s_1, s_2, t\}$$

Each component

marked by different color

Example (green vertices) of

 $P(S, \mathbb{F})$ with $S = \{s_1, s_2\}$.

Outputs of the algorithms we will discuss, GC_{sum} and PW,

```
are in the P(S, \mathbb{F}) format.
```


GC vs FC

Optimal Path Forest, OPF

Definition (Optimal Path Forest, OPF)

For a path $p = \langle c_1, \ldots, c_k \rangle$ in G let $\mu(p) = \min_{i < k} w(\{c_k, c_{k+1}\})$, the *weakest link* of p.

A forest \mathbb{F} w.r.t. *W* is *path-optimal* provided for every $c \in C$, the unique path p_c in \mathbb{F} from *W* to *c* is μ -optimal in *G*, i.e., $\mu(p_c) \ge \mu(p)$ for any path *p* in *G* from *W* to *c*.

For OPF \mathbb{F} w.r.t. W, $\mu(p_c) = \mu^C(c, W)$ for every $c \in C$ (with μ^C in the Fuzzy Connectedness sense)

Theorem ([KC et al.] OPF object minimizing ε_{∞})

There exists the smallest $P_{\min} \in \mathcal{P}(S, T)$ in form $P(S, \mathbb{F})$, where \mathbb{F} is an OPF w.r.t. $S \cup T$.

F is found by GC_{max} , a version of Dijkstra's shortest path algorithm, in a linear time w.r.t. |C| + M, where M is the size of the range of w.

In practice, O(|C| + M) = O(|C|).

The object P_{min}, returned by GC_{max}, coincides with the Iterative Relative Fuzzy Connectedness, IRFC, object.

くロト (過) (目) (日)

Every MSF is OPF, but not the other way around.

Krzysztof Chris Ciesielski Delineating objects via ℓ_p energies 27

MSF and Power Watershed, PW, algorithm

Theorem ([C. Couprie et al.] PW output as MSF)

PW algorithm returns $P(S, \mathbb{F})$ for a MSF \mathbb{F} w.r.t. $S \cup T$.

 \mathbb{F} is found by PW via a complicated version of Kruskal's algorithm and, locally, Random Walker algorithm.

Since

- IRFC object is indicated by OPF,
- PW object is indicated by MSF, and
- every MSF is OPF

What is the relation between IRFC and PW objects?

GC vs FC

Forests

向 ト イヨ ト イヨ ト

New results on GC_{max}, MSF, and OPF

Theorem ([KC et al.] MSF vs OPF)

If P_{\min} is the output of GC_{\max} (the smallest $P(S, \mathbb{F})$, with with \mathbb{F} is being OPF w.r.t. $S \cup T$), then $P_{\min} = P(S, \hat{\mathbb{F}})$ for some MSF $\hat{\mathbb{F}}$.

If \mathbb{F} is a MSF w.r.t. $S \cup T$, then $P(S, \mathbb{F})$ minimizes energy ε_{∞} (in $\mathcal{P}(S, T)$).

 $P(S, \mathbb{F})$, with \mathbb{F} being OPF w.r.t. $S \cup T$, need not minimize ε_{∞} .

In other words

 $P_{\mathsf{min}} \in \mathcal{P}_{\mathit{MSF}}(\mathcal{S}, \mathcal{T}) \subset \mathcal{P}_{\mathit{OPF}}(\mathcal{S}, \mathcal{T}) \cap \mathcal{P}_{\varepsilon_{\infty}}(\mathcal{S}, \mathcal{T}),$

where $\mathcal{P}_{MSF}(S, T) = \{P(S, \mathbb{F}) : \mathbb{F} \text{ is MSF}\}$, similarly for OPF, and $\mathcal{P}_{\varepsilon_{\infty}}(S, T)$ is the set of all ε_{∞} -optimizers.

- The problem of object delineation in a digital image: translating intuition to energy minimization setup
- 2 Object cost as a function of object boundary; ℓ_p cost
- 3 Delineation algorithms associated with ℓ_p energies
- 4 Comparison of GC and FC image segmentations
- 5 Spanning forests, Dijkstra algorithm, IRFC and PW objects

6 Relation between MSF vs OPF: proof

Object delineationDefining energies ε_{ρ} algorithmsGC vs FCForestsOutline of the proof of Main Theorem

• Describe Dijkstra's algorithm that gives OPF \mathbb{F} with $P_{\min} = \mathcal{P}(S, \mathbb{F})$. Notice, it is the smallest set in $\mathcal{P}_{OPF}(S, T)$.

Thm on MSF vs OPF: proof

• Use Kruskal's algorithm to find MSF $\hat{\mathbb{F}}$ with $P_{\min} = \mathcal{P}(S, \hat{\mathbb{F}})$.

- Show that P(S, 𝔅) ∈ P_{ε∞}(S, T) whenever 𝔅 is MSF.
 An argument is a variant of a proof that Kruskal's algorithm indeed returns MSF.
- Give examples, showing that no inclusion can be reversed.

ヘロト ヘワト ヘビト ヘビト

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof Dijkstra's algorithm DA: standard vs our version

 $G = \langle C, E, w \rangle$, \mathbb{F} generated forest w.r.t. W, $S \subset W \subset C$ p_c – unique path in \mathbb{F} from W to $c \in C$

- Standard DA "grows" tree from a single source set *W*. We use DA to grow forest with a multiple sources set *W*.
- In standard DA, path *p_c* has the smallest length. (It optimizes path measure "sum of weights of all links.")
 We use DA to optimize *p_c* w.r.t. "weakest link measure" μ.
- Newest variation:

We insure that $P_{\min} = P(\mathbb{F}, S)$ is the smallest possible. No control of algorithm's output among $\mathcal{P}_{\varepsilon_{\infty}}(S, T)$ was insurable before introduction of GC_{\max} (as far as we know).

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof GC_{max} (i.e., our DA) data structure

- \mathbb{F} is grown from roots, $W = S \cup T$, via adding edges.
- \mathbb{F} is indicated via path-predecessor map Pr: $Pr[W] = \{\emptyset\}, Pr(c) = predecessor of c in p_c \text{ for } c \notin W$
- R(c) indicates root of c: the initial $w \in W$ belonging to p_c
- We use preorder relation \prec on $\mathbb{R} \times C$:

 $\langle x, c \rangle \prec \langle y, d \rangle \iff x < y \text{ or } (x = y \& d \in T \& c \notin T)$

- Initialize $\mu(c) = 1$, R(c) = c, $Pr(c) = \emptyset$ for $c \in W$
- Initialize $\mu(c) = -1$, R(c) = c, Pr(c) = c for $c \in C \setminus W$
- Insert every $c \in C$ into queue Q according to priority \preceq

(E) < E)</p>

end

・ロト ・四ト ・ヨト ・ヨト

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof **Properties of GC**_{max}; correctness

line 2: Each $c \in C$ is removed precisely once from Q

- with $\mu(c) = \mu(c, W)$
- with \prec -maximal value of $\langle \mu(c), R(c) \rangle$

Proof: If the above fails for a $c \in C$ and c comes from the fist execution of line 2 when this happens, then, in earlier execution of lines 4-9, the value $\langle \mu(c), R(c) \rangle$ would have been increased.

So, indeed \mathbb{F} is OPF and $P_{\min} = \mathcal{P}(S, \mathbb{F})$ is the \subset -smallest element of $\mathcal{P}_{OPF}(S, T)$.

Next we show that ${\it P}_{min}={\it P}({\it S},\hat{\mathbb{F}})$ for some MSF $\hat{\mathbb{F}}$

ヘロア 人間 アメヨア 人口 ア

Kruskal's algorithm creates MSF $\hat{\mathbb{F}}$ for $G = \langle C, E, w \rangle$ as follows:

- it lists all edges of the graph in a queue *Q* such that their weights form a non-increasing sequence;
- it removes consecutively the edges from *Q*, adding to 𝔅 those, which addition creates, in the expanded 𝔅, neither a cycle nor a path between different vertices from *W*; other edges are discarded.

This schema has a leeway in choosing the order of edges in Q: those that have the same weight can be ordered arbitrarily.

This leeway will be exploited in the next proof.

Put $B = \mathrm{bd}(P(S,\mathbb{F}))$.

Insert every $e \in E$ into queue Q such that:

- the weights of $e \in Q$ are in a non-increasing order;
- among the edges with the same weight, all those from $E \setminus B$ precede all those from B.

Apply Kruskal's algorithm to this Q to get MSF $\hat{\mathbb{F}}$.

 $\hat{\mathbb{F}}$ is an MSF by the power of Kruskal's algorithm.

To prove that $P(S, \hat{\mathbb{F}}) = P(S, \mathbb{F})$ it is enough to show that $\hat{\mathbb{F}} \cap B = \emptyset$. Let $e = \{c, d\} \in B = \mathrm{bd}(P(S, \mathbb{F})), c \in P(T, \mathbb{F}).$ We show that:

In KA, adding *e* to $\hat{\mathbb{F}}$ would create a path from *S* to *T*.

Let p_c and p_d be the paths in \mathbb{F} from W to c and d. Then

 $\mu(p_c) \ge w_e \text{ and } \mu(p_d) \ge w_e.$ (1)

Proof: If $\mu(p_c) > \mu(p_d)$, then $w_e \le \mu(p_d)$, since otherwise $\mu(p_d) < \min\{\mu(p_c), w_e\} \le \mu(d, W)$, contradicting optimality of p_d .

Similarly, $\mu(p_c) < \mu(p_d)$ implies $w_e \leq \mu(p_c)$.

Finally, $\mu(p_c) = \mu(p_d)$ implies $w_e < \mu(p_c) = \mu(p_d)$, since otherwise GC_{max} (during the execution of lines 6-8 for *c* and *d*) would reassign *d* to $P(T, \mathbb{F})$, contradicting $d \in P(S, \mathbb{F})$. So, (1) is proved.

Defining energies ε_n algorithms Thm on MSF vs OPF: proof Object delineation $\hat{\mathbb{F}}$ is disjoint with $B = \mathrm{bd}(P(S,\mathbb{F}))$, continuation

For $e = \{c, d\} \in B = bd(P(S, \mathbb{F})), c \in V \setminus P(S, \mathbb{F})$, we show:

GC vs FC

Forests

In KA, adding e to $\hat{\mathbb{F}}$ would create a path from S to T.

For paths p_c and p_d in \mathbb{F} from W to c and d,

 $\mu(p_c) > w_e$ and $\mu(p_d) > w_e$.

Let $E' = \{ e' \in E : w_{e'} \ge w_e \} \setminus B$. Then, $\hat{\mathbb{F}} \cap E'$ is already constructed by KA. It is enough to show that

In $\hat{G} = \langle V, \hat{\mathbb{F}} \cap E' \rangle$ there is path \hat{p}_d from *S* to *d* and \hat{p}_c from *T* to *c*.

Proof. The component \mathbb{C} of d in \hat{G} intersects S, as otherwise there is an $\hat{e} \in p_d \subset E'$ only one vertex of which intersects \mathbb{C} and $\hat{e} \in E'$ would have been added to $\hat{\mathbb{F}}$, but was not. So, indeed, there is \hat{p}_d as claimed. Similarly, for \hat{p}_c . QED

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof If \mathbb{F} is an MSF, then $P(S, \mathbb{F})$ minimizes ε_{∞}

Let \mathbb{F} be an MSF and $P = P(S, \mathbb{F})$. Note that

 $\varepsilon_{\min} \stackrel{\text{def}}{=} \{ \varepsilon_{\infty}(P) \colon P \in \mathcal{P}(S, T) \} = \max\{ \mu(p) \colon p \text{ is from } S \text{ to } T \}$

We need to show that $\varepsilon_{\infty}(P) \leq \varepsilon_{\min}$. Assume it is not.

Then, there is an $e = \{c, d\} \in E$ with $c \in P = P(S, \mathbb{F}) \cap bd(P)$ for which $w_e > \varepsilon_{\min}$. Let p_c and p_d be the paths in \mathbb{F} from W to c and d. Then either $\mu(p_c) < w_e$ or $\mu(p_d) < w_e$; otherwise there is path p from S to T with $\mu(p) = w_e > \varepsilon_{\min}$, a contradiction.

Assume that $\mu(p_c) < w_e$. Then $p_c = \langle c_1, \ldots, c_k \rangle$ with k > 1 and $e' = \{c_{k-1}, c_k\}$ has weight $\leq \mu(p_c) < w_e$. But then $\mathbb{F}' = \mathbb{F} \cup \{e\} \setminus \{e'\}$ is a spanning forest w.r.t. *W* with $w(\mathbb{F}') = w(\mathbb{F}) + w_e - w_{e'} > w(\mathbb{F})$, contradicting that \mathbb{F} is MSF. QED

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We proved that GC_{max} algorithm returns OPF \mathbb{F} for which $P(S, \mathbb{F})$ minimizes $\varepsilon_{\infty}(P) \stackrel{\text{def}}{=} \max_{e \in bd(P)} w(e)$ in $\mathcal{P}(S, T)$.

Moreover,

 $P_{\mathsf{min}} \in \mathcal{P}_{\mathit{MSF}}(\mathcal{S}, \mathcal{T}) \subset \mathcal{P}_{\mathit{OPF}}(\mathcal{S}, \mathcal{T}) \cap \mathcal{P}_{\varepsilon_{\infty}}(\mathcal{S}, \mathcal{T}),$

where $\mathcal{P}_{MSF}(S, T) = \{P(S, \mathbb{F}) : \mathbb{F} \text{ is MSF}\}$, similarly for OPF, and $\mathcal{P}_{\varepsilon_{\infty}}(S, T)$ is the set of all ε_{∞} -optimizers.

None of the inclusions can be reversed.

ヘロア 人間 アメヨア 人口 ア

Object delineation Defining energies ε_p algorithms GC vs FC Forests Thm on MSF vs OPF: proof

Thank you for your attention!

Krzysztof Chris Ciesielski Delineating objects via ℓ_p energies 41

ヘロア 人間 アメヨア 人口 ア

2